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Stationary periodic wave flow regimes of thin films of a viscous fluid on an in- 
clined plane are considered. 

The intensity of heat and mass transfer processes in film flows, widely spread in ener- 
getics, chemical technology, and other areas, depends to a large extent on the flow regime in 
the film. Therefore, the properties of these flows were investigated theoretically and ex- 
perimentally in numerous studies. It was discovered that laminar flow with a constant film 
thickness is unstable with respect to sufficiently long-wave perturbations for film Reynolds 
numbers exceeding some critical value, which depends on the inclination angle of the sublayer 
and vanishes for a film on a vertical plate. If the Reynolds number is not too large, the 
stability loss of non-wave flow leads to establishment of a stationary, periodic regime of 
weakly nonlinear waves [i]. Theoretically, as shown by numerical calculations [2, 3], sta- 
tionary periodic solutions of the hydrodynamic equations of a thin fluid layer exist almost 
in the whole region of wave numbers, corresponding to perturbations unstable in the linear 
theory. The stability problem of all these solutions remains, however, open, and important 
experiments indicate the traveling waves are indeed realized with wave numbers in a quite 
narrow interval around a totally determined value, depending on the Reynolds number of the 
unperturbed flow and on the properties of the fluid (see [4]). Indeed, the problem arises 
of determining this a priori unknown value. 

According to the linear theory, there exists a unique value of the wave number, corres- 
ponding to waves of maximum growth, for which the amplitude increment is maximum. It follows 
from experiments that this value can also be used for approximate description of weakly non- 
linear waves [5, 6], as is also assumed, e.g., in [7]. Generally speaking, however, this 
assumption does not follow; for unique determination of the wave regime in a nonlinear sys- 
tem one usually uses additional assumptions. Thus, waves were selected in [8] for which 
energy dissipation is minimal, and an "optimal" regime was considered in [9], corresponding 
to a minimal film thickness (for a given flow rate). Obviously, a unique nonlinear wave re- 
gime, which can be assumed in a certain sense distinct, is the regime with maximum relative 
wave amplitude, also noted in [8, 9]. This regime, in which the relative amplitude, consid- 
ered as a function of wave number, reaches a maximum, possesses such properties so that for 
its nonlinear increment the amplitude growth, also considered as a function of wave number, 
vanishes together with its first derivative. As follows from the analysis of [i0], for a 
"soft" type of perturbation the instability usually realized in thin films and the weak su- 
percriticality must establish a stationary secondary flow of precisely this nature. For 
films with a low flow rate this regime was studied in [Ii] by the small-parameter method, 
with the parameter taken to be the product of the film Reynolds number by the "long-wave" 
parameter -- the ratio of the unperturbed film thickness to the perturbation wave length. 
An evolution equation, accurate up to second-order effects (exclusive) in this parameter, 
was obtained for film waves, a special variant of which coincided with the equation used 
in [12-15]. Unlike [12-15], however, the validity region of the equations obtained was 
rigorously indicated in [ii]. The wave-nUmber value characterizing the stationary regime 
of traveling waves was only 1.025 times larger than that calculated in [8], and exceeded 
approximately 1.178 times the value corresponding to maximum growth waves. 

The validity conditions of the results of [ii] are quite restricting, and most real 
film wave flows do not satisfy them. Therefore, in the present study the evolution equa- 
tion and the characteristics of the stationary wave regime for low flow rates have been 
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obtained accurately to second-order effects in the small parameter indicated above. Be- 
sides, the method used of studying the stationary regime is also valid within the approxi- 
mate Karman- Pollhausen approach (approximating the instantaneous velocity profile in the 

film by a self-similar polynomial gives fair results for two-dimensional waves [I, 4]), which 
made it possible to advance to the region of significantly higher rates. 

We introduce dimensionless variables and parameters (the primes denote the corresponding 
dimensional variables) 
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where uo and ho are the mean velocity and film thickness in the unperturbed (non-wave) re- 
gime. 

The equations of motion in the thin fluid layer approximation with the associated bound- 
ary conditions in the variables (i) were similarly treated in [ii], as well as in a number 
of other studies not cited here. 

The solution of this problem is represented in the form 

= ~ v ~ ,  % - -  vy , p =  ~p,~. (2) 
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Linear problems can be formulated for the coefficients of series (2), formally obtained 
within the various orders of powers of ~. In this case we assume that ~Re equals in order 
of magnitude the relative perturbation amplitude of the film thickness or less (unlike [Ii], 
where r Due to the awkwardness, we write only the expressions for v (i), following 
from solving the problems indicated: x 
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In deriving (3), (4) it was assumed that T ~i (the surface tension can 
and etg a~ I (the planar sublayer can be quite nearly horizontal). 

It follows from the continuity equation that 
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0 

Using express ions  (3) and (4) ,  we ob ta in  from (5) an e v o l u t i o n  equa t ion  
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We stress that no restrictions are imposed on the quantity ~ in (6). In the first ap- 
proximation in a, Eq. (6) coincides with the equation obtained in [ii]. 

Below we consider in detail weakly nonlinear waves (~ << I) when T ~e << I and tg ~ i  
(i.e., ~tg~ ~ << I), so that Eq. (6) can be simplified substantially, For this we take 
into account that in the zeroth approximation in ~ and the first in ~, Eq. (6) transforms 
into a well-known linear equation, whose solution can be an arbitrary function f(x -- 3t), 
and according to standard methods we replace the derivative 3/~t in terms of order ~ in (6) 
by --33/$x. In addition, we choose the longitudinal scale % equal to ho, so that in the dimen- 
sionless coordinate system thus determined e = i, but in return the dimensionless wavelength 
L must be much larger than unity. With account of (4), (7) we then obtain from (6) after 
some calculations 
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This equation was written down with an accuracy up to terms of order @, inclusive; 
this is sufficient for analyzing weakly nonlinear stationary wave regimes [i0, ll]. 

We represent the unknown ~ of Eq. (8) in the form 
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where k, ~, and y are real quantities. From the reality condition of ~ it follows that #-n = 
~, where the asterisk denotes complex conjugation. For weakly nonlinear periodic waves it 
can be assumed that the amplitude of the first harmonic (n = i) is much larger than the am- 
plitudes of all other harmonics. Substituting (9) into Eq. (8), and restricting ourselves 
to first-order terms in the quantity q = ~,~-~ = [$1[ 2, we have the following dispersion 
relation, corresponding to harmonics with n = 1 and n = 21 
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It follows from (i0) that 
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Fig. i. Neutral stability curves for flow over a vertical plate ac- 
cording to [ii] (curves i, 2 are for water, R = 11.93, and transformer 
oil, R = 1.79; stability regions are above curves) and by Eq. (14) (I 
and II correspond to water and oil, and the stability regions between 
the curves are shaded). 

Fig. 2. Phase velocity of waves. Curves obtained from theory: I) [ii]; 
III) (13); V) (21)-(24) at q = 0 (for waves of maximum growth); II, 
IV, VI, the same for q~:O (for stationary nonlinear waves). Points 
obtained by experiment: i) water, R = 11.34; 2) aqueous solutions of 
ethyl alcohol and glycerin, R = 8.25; 3) ethyl alcohol, R = 6.40; 4-9) 
aqueous solution of glycerin for R = 8.15, 6.30, 4.77, 3.98, 4.77, 
and 8.10, respectively [19]; i0) water, R = 10.94; ii) ethyl alco- 
hol, R = 6.60 [16]; 12) water, R = 11.93 [17]; 13, 14) transformer oil at 
R = 1,79, 1.16 [18], ~ = 0. 

It follows from (12) that ~a ~ q. The quantity ~o is determined from the requirement 
that the dimensionless flow rate in the film be equal to its given unperturbed value, i.e., 
to unity in the variables (i). It hence follows, as in [ii], that ~o = --2q, which finally 
determines Eq. (13). The harmonics in (9) with n > 2 are of higher order of smallness in q: 
~n ~ qn/i [I0], so that they can be neglected within the accuracy chosen. 

Equation (13) describes ~ and y as functions of k and q. Within the linear theory 
(q + 0) we obtain from (13) the dependence of ~ and y on the wave number, determining the neu- 
tral stability curve of unperturbed flow, as well as the frequency, velocity, and increment 
(or damping decrement) of waves of various lengths. For q = 0 we have 

3 q- (A~C, - -  D) k z 47 (C~ q- BCO k ~ k, 
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(14) 

Analysis of the second relation (14) shows that flow of a film with a constant thickness 
is unstable not only with respect to long-wave perturbations, as is well known from numerous 
preceding studies, but also with respect to perturbations with sufficiently short wavelengths. 
The instability regions noted are separated by intermediate stability regions, shown in Fig. 
i for waves on a vertical plate. Thus, the analysis provided reflects not only mechanisms 
of appearance of nearly harmonic waves, but also determines the degree and excitation mechan- 
isms of rolling waves. As is well known, the occurrence of a small shortwave ripple at al- 
most-harmonic wavelengths was observed experimentally many times. 

For q=f= 0, ~ is conveniently represented in the form 

= ~l(k)  + q~(k ) ,  v = r l (k)  + qr~(k). (15)  

T a k i n g  i n t o  a c c o u n t  t h a t  t h e  s t a t i o n a r y  r e g i m e  c o r r e s p o n d s  to  a v a n i s h i n g  a m p l i t u d e  i n -  
c r e m e n t ,  w h i l e  t h i s  v a l u e  m u s t  c o r r e s p o n d  t o  t h e  maximum v a l u e  o f  ~ ,  c o n s i d e r e d  as  a f u n c t i o n  

1116 



of k for fixed q, we obtain an equation for the determination of k and q characterizing the 
stationary wave regime:* 

dFl dF~ = O. (16) 
Px (k) + qr~ (k) = 0, - - Z  + q dk 

These  q u a n t i t i e s  can  a l s o  be e x p r e s s e d  w i t h i n  t h e  a c c u r a c y  a d o p t e d  i n  t e rms  o f  t h e  wave 
number  k m o f  maximum g r o w t h  waves .  From (16)  we have  
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q-- F~(km) ' F~(km) dkm _ dk~ j 

Figures 2-4 show results of calculating the quantities q and k, as well as the phase ve- 
locity of stationary traveling waves according to the nonlinear theory considered above and 
the theory of [Ii]. Also shown are curves obtained from the corresponding linear variants 
of the theory for waves of maximum growth, as well as several experimental data. Unfortu- 
nately, for small Reynolds numbers, for which the theory suggested is valid, there exist few 
experimental data, while their accuracy is not high. The latter is due to difficulties of 
measuring wave characteristics at low wave amplitudes. In this region, therefore, one cannot 
talk convincingly about good agreement of theoretical results with experiment. 

Most known experiments refer to the region Re~ c -~, to which the small-parameter method 
is not applicable. (Obviously, retention of terms of order E 3 and higher in series (2) can- 
not lead, in principle, to extension of the results obtained to the region indicated.) For 
approximate analysis of the stationary wave regimes in this region, we use below a method of 
integral relations in the form suggested in [7]. The instantaneous longitudinal velocity dis- 
tribution over the thickness of the wavy film is approximated by the self-similar parabolic 
profile 

v~ = - ~ -  , (18) 

where ~ is treated as an unknown variable in addition to ~. Comparison of (18) with (3) 
shows that the parabolic profile describes the velocity distribution inaccurately even for 
small Re. But comparison with experimental data (see, e.g., [4]) shows convincingly that the 
error of this approximation is not very large until moderately high values of Re. 

Following transformations similar to [7], from the hydrodynamic equations of a thin lay ~ 
er of a viscous fluid we obtain a system of equations for ~ and ~, which in the accepted nota- 
tion is written for e = 1 in the following form: 

Re [(1 +. , )  (I -[- r + ~ ~ [( t ]-- ~)2 (1 -]-- qo)] -- 1 + ~0 

Oq~ Oar 
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We assume that ~ << I, ~ << i, and write in addition to (9) 

q~ = ~__~ W,,. exp [in (o~l - -  kx) ] ,  ~ _ ~  = W,*. 

(19) 

(20) 

*We note that the requirement of maximum value of y as function of wave number k is not an 
additional hypothesis. The meaning of this requirement is discussed in [i0, ii], and con- 
sists of the following. On one hand, if the wave regime is characterized by a wave number 
ks, the stationarity condition of this regime requires vanishing of the corresponding oscil- 
lation increment, i.e., Y(ks) = 0. On the other hand, the regime under consideration cor- 
responds to almost-harmonic oscillations. This implies that oscillations corresponding to 
all other k values must be damped, i.e., y(k) < 0 for k ~ k . Obviously, simultaneous satis- $ 
faction of these requirements is possible only if the functmon y(k) reaches a maximum value 
at the point k = ks, while this value vanishes exactly. 
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Substituting (9) and (20) into (19), we obtain instead of (i0) 
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By the equality condition of the dimensionless flow rate to unity (see last equation in 
(19)) we get 
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It follows from (22) and (23) that 
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Relations (24) completely determine the first equation in (21), from which follows a 
dispersion equation relating ~ and 7 with k and q = #xr completely in analogy with (13). 
To analyze the latter equation it is convenient to use expressions (15)-(17). In the linear 
approximation the dispersion relation of the problem considered was investigated in [7], and 
therefore we do not write down the relation similar to (14). 

The dependences of the quantity q, the wave number, the velocity of linear waves of 
maximum growth, and the nonlinear stationary waves, corresponding to the theory discussed, 
on the physical and regime parameters are shown in Figs. 2-4. It is seen that they agree 
not badly with the experimental data of [16-19]. 

Thus, unlike the known studies of wave flows of thin layers of a viscous fluid, the 
stationary almost-harmonic regime of traveling waves is completely determined in sufficiently 
wide intervals of the Reynolds number and ordinarily used "film number" 

03 O0,3 
Fi = R i~ 9ReZWe 3 : - - ,pSg v~ R : po,3go, 1 o , 4  ( 2 5 )  

without including any further considerations, which is also a principal result of the pre- 
sent study. The stationary regime parameters have been determined with an accuracy up to 
components of order q, the square of the relative amplitude of the main harmonic perturba- 
tion of the film thickness. We note that enhancement of accuracy of the dispersion relations 
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Fig. 3. Wave amplitude. Notation same as in Fig. 2; ~ = O. 

Fig. 4. The wave number of waves: 15) water, R = 11.09 [5]; 16) 
ethyl alcohol,R = 6.40 [7]; 17) aqueous solution of glycerin, R = 
7.71 [7]; remaining notation same as in Fig. 2; ~ = 0. 

obtained only by inclusion of harmonics with Inl > 2 in the series (9) and (20) is not po@si- 
ble, since the evolution equation (8) was written accurately up to terms of order ~ ~ q ~7= 
(but not ~4 ~ q=), while approximation (18) is inaccurate to start with. 

The results obtained also make it possible to write down several approximate analytic 
relations for the various characteristics of stationary wave regimes, generalizing the re- 
sults of [!i]. These relations, however, are quite awkward and are not given here due to 
lack of space. In many cases it is natural to resort to numerical calculations, as was done 
above. This problem will be considered in more detail in the near future in analyzing heat 
and mass transfer processes in thin films containing wave motion. 

NOTATION 

Ai, C i,D, quantities introduced in (ii); B, quantity introduced in (8); c, dimensionless 
phase velocity; E, Ei, quantities introduced in (22); F, H, G, functions introduced in (4); 
Fi, quantities introduced in (24); g, gravity acceleration; h, ho, film thicknesses in the 
wave and non-wave regimes; k, wave number; km, wave number for waves of maximum growth; L, 
dimensionless wavelength; mi, ni, parameters in (7); Ni, N,, functions introduced in (4); p, 
p', dimensionless and dimensional pressures; q, square of the main harmonic of the wave; Ui, 
Vi, Wi, functions introduced in (4); T, parameter in (i); t, t', dimensionless and dimen- 
sional times; uo, mean velocity in the non-wave regime; v, v', dimensionless and dimensional 
velocities; x, y, x', y', dimensionless and dimensional longitudinal and transverse coordin- 
ates; ~, angle between the sublayer film and the vertical planes; ~, quantities introduced 
in (15); y, amplitude increment; s, "long-wave" parameter; q, dimensionless film thickness; 
X, linear longitudinal scale; y, kinematic viscosity; p, fluid density; ~, surface tension 
coefficient; @i, functions introduced in (9); ~, dimensionless wave amplitude; ~i, functions 
introduced in (20); ~, dimensionless velocity perturbation introduced in (18); ~, wave fre- 
quency; ~i, quantities introduced in (15); ~, complex wave frequency; Fi, film number; Re, 
We, Reynolds and Weber numbers; asterisk denotes complex conjugation. 
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INTERFEROMETER INVESTIGATION OF CONVECTION IN A HORIZONTAL 

FLUID LAYER 

Z. P. Shul'man, F. Kh. Tazyukov, 
F. A. Garifullin, and P. A. Norden 
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The temperature field in free convective motion of a non-Newtonian fluid is stud- 
ied by using an interferometer. A method of constructing the flow pattern by 
means of the interferograms obtained is developed, 

An interferometer method is used extensively to visualize temperature fields in gases 
and liquids [i]. Thus, thermal regime characteristics are determined for a horizontal liquid 
layer heated from below. A detailed description of the test and analysis methods of the re- 
sults obtained is presented in [2-4]. 

The flow pattern in gases and liquids can be observed by using an interferometer only 
when the velocity changes in the domain under investigation are large, resulting in notice- 
able density changes (compressibility) and, therefore, in changes in the refractive index 
also. The velocity gradients in free convection in a horizontal layer are so small that it 
is impossible to observe the flow pattern by means of an interferometer. 
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